证明两个增函数的和为增函数

证明两个增函数的和为增函数

题目
证明两个增函数的和为增函数
答案
用定义法即可.
令h(x)=f(x) + g(x),其中f(x),g(x) 都为增函数.
令X2>X1,那么 h(x2) - h(x1) = f(x2) + g(x2) - [f(x1) + g(x)]
=[f(x2) - f(x1)]+[g(x2) - g(x1)]
因为f(x),g(x) 都为增函数,所以
f(x2) - f(x1)> 0 ,g(x2) - g(x1)> 0
因此 h(x2) - h(x1)> 0
所以命题得证 .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.