方阵的秩就等于这个方阵的线性无关特征向量的个数,那么满秩方阵就是可对角化的吗?

方阵的秩就等于这个方阵的线性无关特征向量的个数,那么满秩方阵就是可对角化的吗?

题目
方阵的秩就等于这个方阵的线性无关特征向量的个数,那么满秩方阵就是可对角化的吗?
能说一下方阵的秩和特征值、特征向量的关系么
答案
方阵的秩与它的线性无关的特征向量的个数不是直接关系
属于特征值λ的线性无关的特征向量的个数为 n-r(A-λE)
属于不同特征值的特征向量线性无关
所以A的线性无关的特征向量的个数 = 和号 [n-r(A-λiE)]
满秩不一定可对角化
若A可对角化,则A的秩等于它的非零特征值的个数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.