证明:f(0)=lim(x->0)[f(x)+f(-x)]/2

证明:f(0)=lim(x->0)[f(x)+f(-x)]/2

题目
证明:f(0)=lim(x->0)[f(x)+f(-x)]/2
答案
这个题应该还有条件吧.函数在x=0处连续.要不然不能证明.如果有这个条件就好证明了.你让右边的算式减去两个二分之一f(0).分别取极限.由连续可知,结果为0.得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.