已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
题目
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1) 试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.
答案
已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图像关于电(a,b)中心对称”
设函数f(x)=(x+1-a)/(a-x),定义域为A
(1)试证明y=f(x)的图像关于点(a,-1)成中心对称
(2)当x属于[a-2,a-1]时,求证:f(x)属于[-(1/2),0]
(3)对于给定的x1属于A,设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止.若对任意xi属于A,构造过程可以无限进行下去,求a的值.
(1)证明:∵函数f(x)=(x+1-a)/(a-x)=1/(a-x)-1
F(a+x)=-1/x-1
F(a-x)=1/x-1
F(a+x)+ F(a-x)=-2
∴f(x)的图像关于点(a,-1)成中心对称
(2)证明:∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
F’(x)=1/(a-x)^2>0
∴当x∈(-∞,a)或(a,+∞)时,单调增
∵x属于[a-2,a-1]
F(a-2)=-1/2
F(a-1)=0
∴f(x)属于[-(1/2),0]
(3)解析:∵设计构造过程:x2=f(x1),x3=f(x2),...,x(n+1)=f(xn),如果xi属于A(i=2,3,4...),构造过程将继续下去;如果xi不属于A,构造过程将停止
要对任意xi属于A,构造过程可以无限进行下去,只要xi不取a即可
∵函数f(x)=1/(a-x)-1,∴其定义域为A={x|x≠a}
令1/(a-x)-1≠a==>x≠(a^2+a-1)/(a-1)
∴当a=-1时,函数f(x)在x=-1处无定义,即1/(a-x)-1≠a恒成立
∴xi不取-1
∴构造过程可以无限进行下去
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 摘抄,有关幸福文章的开头与结尾
- 4+7+10+13+.+40+43+46等于多少
- 馒头和面包内部疏松多孔,是因为里 面揉入了( ).A、糖 B、二氧化碳 C、酵母菌D、酵母
- 一束光线l自A(-3,3) 求在x轴上,放射点M的范围
- 1.已知点p在曲线y=4/(e^x+1)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是?
- 如果将一根木料锯成4段,小敏要用6分钟,李叔叔锯木料的速度是小敏的2倍,求李叔叔把这根木料锯成8段,需要几
- () ()的果实 在括号里填上合适的词语 帮帮忙啊! ()
- "长"的笔画笔顺是什么
- 正方形边长1 求对角线长度
- 分类加法记数原理与分步乘法记数原理题