在△ABC中,角A、B、C的对边分别为a、b、c,如果cos(2B+C)+2sinAsinB<0,那么三边长a、b、c之间满足的关系是( ) A.2ab>c2 B.a2+b2<c2 C.2bc>a2
题目
在△ABC中,角A、B、C的对边分别为a、b、c,如果cos(2B+C)+2sinAsinB<0,那么三边长a、b、c之间满足的关系是( )
A. 2ab>c2
B. a2+b2<c2
C. 2bc>a2
D. b2+c2<a2
答案
在△ABC中,由cos(2B+C)+2sinAsinB<0可得,cos(B+B+C)+2sinAsinB<0.∴cosBcos(B+C)-sinBsin(B+C)+2sinAsinB<0,即 cosBcos(π-A)-sinBsin(π-A)+2sinAsinB<0.∴-cosBcosA-sinBsinA+2sinAsinB<0,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点