已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t), (I)求t的值; (II)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求
题目
已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(I)求t的值;
(II)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.
答案
(I)依照条件可知:抛物线过原点,且焦点在y轴上,设抛物线方程为x
2=2py
由条件焦点为F(0,1),得抛物线方程为x
2=4y …(3分)
∴把点A代入x
2=4y,得t=1 …(6分)
(II)当K
AP和K
AQ不存在时,P或Q其中一点与A重合,一点与A平行于X轴,其中一个斜率为0,一个为无穷大,不符合题意.
设直线AP的斜率为k,AQ的斜率为-k,
则直线AP的方程为y-1=k(x-2),即y=kx-(2k-1)
联立方程:
消去y,得:x
2-4kx+4(2k-1)=0 …(9分)
∵x
Ax
P=4(2k-1),A(2,1)
∴x
P=4k-2
∴y
P=4k
2-4k+1
同理,得x
Q=-4k-2,y
Q=4k
2+4k+1…(12分)
∴
kPQ= =−1是一个与k无关的定值.…(15分)
(I)依照条件可知:抛物线过原点,且焦点在y轴上,设抛物线方程为x2=2py,利用焦点为F(0,1),可求得抛物线方程;
(II)当kAP和kAQ不存在时,P或Q其中一点与A重合,一点与A平行于X轴,其中一个斜率为0,一个为无穷大,不符合题意.
设直线AP的斜率为k,则AQ的斜率为-k,可得直线AP,AQ的方程,与抛物线方程联立求得交点坐标,进而可求斜率,从而可得结论.
直线与圆锥曲线的综合问题.
本题以抛物线的性质为载体,考查抛物线的标准方程,考查直线与抛物线的位置关系,应掌握定值问题的探究方法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点