设f(x)=x2+px+q,p.q属于R M={X|X=f(x)}N={X|X=f[f(x)]}
题目
设f(x)=x2+px+q,p.q属于R M={X|X=f(x)}N={X|X=f[f(x)]}
求:证明M是N的子集
当M={-1,3}时,求N
答案
证:对于任意 y属于M,则有y=y^2+py+q,从而f[f(y)]=(y^2+py+q)^2+p(y^2+py+q)+q =y^2+py+q=y所以:y也属于N.从而有M是N的子集.当M={-1,3}时知-1,3是方程x^2+(p-1)x+q=0的两个根,由韦达定理知:p= -1,q=-3此时f(x)=x^2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点