解不等式:(|3x-1|-1)(sinx-2)>0.
题目
解不等式:(|3x-1|-1)(sinx-2)>0.
答案
因为对任意x∈R,sinx-2<0,
所以原不等式等价于|3x-1|-1<0.
即|3x-1|<1,-1<3x-1<1,0<3x<2,
故解为
0<x<.
所以原不等式的解集为
{x|0<x<}.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点