(1)∵∠A=80°(已知),
∴∠ABC+ACB=180°-80°=100°(三角形内角和定理),
∵BD,CF是∠ABC,∠ACB的平分线,
∴∠EBC+∠ECB=
(∠ABC+ACB)=50°,
∴∠BEC=180°-50°=130°(三角形内角和定理);
(2)∵∠BEC=130°,
∴∠EBC+∠ECB=
(∠ABC+ACB)=180°-130°=50°(三角形内角和定理),
∴∠ABC+∠ACB=2×50°=100°,
∴∠A=180°-100°=80°(三角形内角和定理);
(3)∠BEC不能是直角,也不能是锐角.理由:
∵∠BEC+
(∠ABC+∠ACB)=180°,∠ABC+∠ACB<180°,
∴180°-∠BEC<90°,
∴∠BEC>90°.
故∠BEC既不能是直角,也不能是锐角.