用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)

用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)

题目
用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)
还有一题:
给定任意正整数n,设d(n)为n的约数个数,证明d(n)
答案
证明:
(1)n=1时,3^(6n)-2^(6n) =3^6-2^6=665=19*35,命题成立
(2)假设n=k时命题成立,即
35能整除3^(6k)-2^(6k)
即3^(6k)-2^(6k)=35m (m∈Z+)
则n=k+1时
3^(6n)-2^(6n)
=3^(6k+6)-2^(6k+6)
=(3^6)*3^(6k)-(2^6)*2^(6k)
=64*[3^(6k)-2^(6k)]+(729-64)*3^(6k)
=64*[3^(6k)-2^(6k)]+665*3^(6k)
=64*35m+19*35*3^(6k)
=35*[64m+19*3^(6k)]
即n=k+1时,35能整除3^(6n)-2^(6n)
综合(1)(2)由数学归纳法知:
对于一切正整数n,35能整除3^(6n)-2^(6n)
===============
给定任意正整数n,设d(n)为n的约数个数,证明d(n)<2√n
证明:
若n存在一个约数a<√n
则n/a=b是n的另一个约数,且b>√n
显然a,b是一一对应的
∵a<√n
∴a的个数<√n
∴b的个数<√n
∴d(n)=a的个数+b的个数<2√n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.