在三棱锥P_ABC 中PA⊥平面ABC,△ABC为正三角形,D,E分别为BC,CA的中点, (1)在BC上求作一点F,使AD‖平面P
题目
在三棱锥P_ABC 中PA⊥平面ABC,△ABC为正三角形,D,E分别为BC,CA的中点, (1)在BC上求作一点F,使AD‖平面P
在三棱锥P_ABC 中PA⊥平面ABC,△ABC为正三角形,D,E分别为BC,CA的中点,
(1)在BC上求作一点F,使AD‖平面PEF,并证明你的结论
(2)设AB=PA=2,对于(1)中的点F,求三棱锥B—PEF的体积
答案
(1)若取F为CD的中点,则AD||平面PEF
证明:因为F为CD的中点,E为CA的中点,所以EF||AD,而EF是平面PEF上的一条直线,所以AD||平面PEF
(2)三棱锥B—PEF的体积V=(1/3)*PA*三角形BEF的面积=(1/3)*(3/4)*(1/2)*三角形ABC的面积
=(1/8)*[(0.5*2*√3]=*(√3)/8 ≈1.732/8=0.2165
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点