求证:方程x^5-5x+1=0有且仅有一个小于1的正实根.要求用反证发和罗尔中值定理

求证:方程x^5-5x+1=0有且仅有一个小于1的正实根.要求用反证发和罗尔中值定理

题目
求证:方程x^5-5x+1=0有且仅有一个小于1的正实根.要求用反证发和罗尔中值定理
求证:方程x^5-5x+1=0有且仅有一个小于1的正实根.
要求用反证发和罗尔中值定理
答案
f(x)=x^5-5x+1
f(0)=1;f(1)=-3
又f是连续的,那么f(x)在(0,1)之间至少有一个实根
反设f在(0,1)之间有两个实根s,t
从而f(s)=f(t)=0,s≠t
从而根据罗尔定理 存在p∈(s,t),f ‘ (p)=0
f ’(x)=5x^4-5=5(x^4 -1)=5(x^2 +1)(x +1)(x-1)
p∈(s,t)包含于(0,1),f ‘ (p)=0即
5(p^2 +1)(p +1)(p-1)=0
显然0综上,f(x)在(0,1)之间有且仅有一个实根,也就是
方程x^5-5x+1=0有且仅有一个小于1的正实根
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.