在三角形ABC的外侧,分别以AB,AC为边向外作等边三角形ABD和等边三角形ACE,
题目
在三角形ABC的外侧,分别以AB,AC为边向外作等边三角形ABD和等边三角形ACE,
以BC为边,在点A的同侧作等边三角形BCF,求证:四边形AEFD是平行四边形
答案
证明:
∵△BCF和△ACE是等边三角形,
∴AC=CE,BC=CF,∠ECA=∠BCF=60°,
∴∠ECA-FCA=∠BCF-∠FCA,
即∠ACB=∠ECF,
∵在△ACB和△ECF中
AC=CE
∠ACB=∠ECF
BC=CF
∴△ACB≌△ECF,
∴EF=AB,
∵三角形ABD是等边三角形,
∴AB=AD,
∴EF=AD=AB,
同理FD=AE=AC,
即EF=AD,DF=AE,
∴四边形AEFD是平行四边形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点