如何证明两个凸函数(一个上凸一个下凸)最多只有两个交点

如何证明两个凸函数(一个上凸一个下凸)最多只有两个交点

题目
如何证明两个凸函数(一个上凸一个下凸)最多只有两个交点
答案
用反证法 设两函数有三个交点 则F(x)=f(x)-g(x) 有三个零点 利用两次罗尔定理得到 存在n使得 F"(n)=0,
而f(x)g(x)一个为凸函数一个为凹函数 => F(x)的二次导函数要么大于0要么小于0 所以矛盾
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.