若把连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=25外的概率是(  )

若把连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=25外的概率是(  )

题目

若把连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=25外的概率是(  )
           

答案
连续抛掷两次骰子分别得到的点数m,n作为点P的坐标所得P点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3...
本题考查的知识点是古典概型的意义,关键是要找出连续抛掷两次骰子分别得到的点数m,n作为点P的坐标所得P点的总个数,
及点P落在圆x2+y2=25外的个数,代入古典概型计算公式即可求解.

古典概型及其概率计算公式.

古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.