若函数y=1+2的x次方+a×2的x次方在x小于等于1上恒为正,则a的取值范围是
题目
若函数y=1+2的x次方+a×2的x次方在x小于等于1上恒为正,则a的取值范围是
答案
y=1+2^x+a*4^x
=1+2^x+a*2^2x
=1+2^x+a*(2^x)^2
所以,设2^x=t 因为x∈(—∞,1] 所以 t∈(0,2]
则既要求 y=1+t+a*t^2 在t∈(0,2] 时 y>0.
又因为 y=a*t^2 +t+1 的对称轴为 t0=-1/2a
1,若 a>0 即 对称轴为 t0=-1/2a < 0
则 y=1+t+a*t^2 在t∈(0,2]为单调增函数
只需y=f(t),在t=0处 > 0 即可.
所以a>0;且 1+0+a*0^2 >0 恒成立
故 a>0 时原函数在x∈(—∞,1]上y>0恒成立.
2,若 a=0 则原函数为 y=1+2^x >0 恒成立.
3,若a0 -----恒成立
且:1+2+a*2^2=3+4a >0 即 0>a>-3/4
综上 a>-3/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点