在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F. (1)求证:BD=BF; (2)若BC=6,AD=4,求⊙O的面积

在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F. (1)求证:BD=BF; (2)若BC=6,AD=4,求⊙O的面积

题目
在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.

(1)求证:BD=BF;
(2)若BC=6,AD=4,求⊙O的面积.
答案
(1)证明:如图,连接OE∵AC切⊙O于E,∴OE⊥AC,又∠ACB=90°,即BC⊥AC,∴OE∥BC,∴∠OED=∠F,又OD=OE,∴∠ODE=∠OED,∴∠ODE=∠F,∴BD=BF;(2)设⊙O半径为r,由OE∥BC得△AOE∽△ABC,∴AOAB=OEBC,即r...
(1)作辅助线,连接OE,根据切线的性质知OE⊥AC,已知∠ACB=90°,可知OE∥BC,得∠OED=∠F,再根据OD=OE,可知∠ODE=∠OED,从而可得∠ODE=∠F,BD=BF;
(2)根据△AOE∽△ABC,可将⊙O的半径求出,代入圆的面积公式S⊙O=πr2,计算即可.

切线的性质;相似多边形的性质.

本题考查了圆的切线性质及相似三角形的判定定理,有一定的综合性.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.