已知向量OP1,OP2,OP3满足条件OP1+OP2+OP3=0,|OP1|=|OP2|=|OP3|=1,求证三角形P1P2P3是正三角形

已知向量OP1,OP2,OP3满足条件OP1+OP2+OP3=0,|OP1|=|OP2|=|OP3|=1,求证三角形P1P2P3是正三角形

题目
已知向量OP1,OP2,OP3满足条件OP1+OP2+OP3=0,|OP1|=|OP2|=|OP3|=1,求证三角形P1P2P3是正三角形
最好能讲两种方法
答案
OP1+OP2=-OP3
(OP1+OP2)^2=(-OP3)^2
OP1^2+2OP1*OP2+OP2^2=OP3^2
|OP1|^2+2|OP1|*|OP2|*cosP1OP2+|OP2|^2=|OP3|^2
cosP1OP2=-1/2
角P1OP2=120度
同理:角P1OP3=角P2OP3=120度.
又|OP1|=|OP2|=|OP3|
可得 |P1P2|=|P2P3|=|P1P3|
故三角形P1P2P3是等边三角形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.