证明(x^1/8)/(((x^1/2+x)^1/2+x)^1/2)的极限是1

证明(x^1/8)/(((x^1/2+x)^1/2+x)^1/2)的极限是1

题目
证明(x^1/8)/(((x^1/2+x)^1/2+x)^1/2)的极限是1
就是证明x的1/8次方和后面那三个根号为等价关系,
答案
把分母放到根号里面去,一步步除以分子
最后代入x=0得极限为1:
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.