如图,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分线,交BI延长线于E,连接CI. (1)△ABC变化时,设∠BAC=2α.若用α表示∠BIC和∠E; (2)若

如图,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分线,交BI延长线于E,连接CI. (1)△ABC变化时,设∠BAC=2α.若用α表示∠BIC和∠E; (2)若

题目
如图,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分线,交BI延长线于E,连接CI.

(1)△ABC变化时,设∠BAC=2α.若用α表示∠BIC和∠E;
(2)若AB=1,且△ABC与△ICE相似,求相应AC长.
答案
(1)在△BCE中有:∠E=180°-∠BCE-∠CBE,
又∠ECI是平角∠BCD的一半,∴∠ECI=90°,
∴:∠E=90°-∠BCI-∠CBE,
在△ABC中:
1
2
∠BAC=
1
2
(180°-∠ABC-∠ACB)
=90°--∠BCI-∠CBE,
∴∠E=α.
在三角形∠BIC=90°+α,∠E=α
(2)①当△ABC∽△ICE时,∠ABC=∠ICE=90°,∠ACB=∠IEC=α,
所以α=30°,AC=2
②当△ACB∽△ICE时,∠ACB=∠ICE=90°,∠ABC=∠IEC=α,
所以α=30°,AC=
1
2

③当△BAC∽△ICE时,∠BAC=∠ICE=90°,∠IEC=
1
2
∠BAC=45°,
所以∠ABC=∠ACB=45°,AC=AB=1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.