已知:a+b+c,b+c-a,c+a-b,a+b-c组成公比为q的等比数列,求证:q3+q2+q=1.
题目
已知:a+b+c,b+c-a,c+a-b,a+b-c组成公比为q的等比数列,求证:q3+q2+q=1.
答案
证明:设x=a+b+c,
则b+c-a=xq,c+a-b=xq2,a+b-c=xq3,
∴xq+xq2+xq3=x(x≠0),
∴q3+q2+q=1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点