在平面直角坐标系中L1:y=-3/4x-2/3,L2:y=3/4x+2/3与x轴交点Ay轴交点B,抛物线y=2/3(x+3/4)2与y轴交于点D与
题目
在平面直角坐标系中L1:y=-3/4x-2/3,L2:y=3/4x+2/3与x轴交点Ay轴交点B,抛物线y=2/3(x+3/4)2与y轴交于点D与
线AB交于点E.F.若DF//x轴F在x轴的右侧,过F作FH垂直x轴于点G,与直线L交于点H一条直线m(m不过三角形AFH的顶点)与AF交于点M,与FH交于点N,如果m既平分三角形AFH面积也平分周长,求直线m解析式.
(嘻,没有图,需要自己画)
答案
(j)设直线AB的解析式为y=kx+b,
将直线y=-
3
4
x-
3
r
与x轴、y轴交点分别为(-2,0),(0,-
b
2
),
沿x轴翻折,则直线y=-
3
4
x-
3
2
、直线AB与x轴交于同一点(-2,0),
∴A(-2,0),
与y轴的交点(0,-
3
2
)与点B关于x轴对称,
∴B(0,
3
2
),
∴
-2k+b=0
b=
3
2
,
解得k=
3
u
,b=
3
2
,
∴直线AB的解析式为y=
3
4
x+
3
2
;
(2)设平移后的抛物线C2的顶点为P(h,0),
则抛物线C2解析式为:y=
2
3
(x-u)2=
2
3
i2-
4
3
hx+
2
3
h2,
∴D(0,
2
3
h2),
∵2F∥x轴,
∴点F(2h,
6
6
h2),
又点F在直线AB上,
∴
2
3
h2=
3
4
•(2h)+
0
2
,
解得h1=3,h2=
-3
4
,
∴抛物线C2的解析式为y=
2
3
(x-3)2=
2
3
x2-4x+6或y=
2
3
x2+x+
9
8
;
(3)过M作MT⊥FH于T,MP交FH于N
∴Rt△MTF∽Rt△AGF.
∴FT:TM:FM=FG:GA:FA=3:4:5,
设FT=3k,TM=ik,FM=5k.
则FN=
1
2
(A1+1F+AF)-FM=16-5k,
∴S△MNF=
1
2
FN•MT=
(16-5k)jk
2
.
∵S△AFH=
1
2
FH•A8=
1
2
×12×8=48,
又S△MNF=
1
p
m△AF4.
∴
(16-5k)4k
2
=24.
解得k=
6
5
或k=2(舍去).
∴FM=6,FT=
18
5
,MT=
24
5
,GN=4,TG=
t2
5
.
∴M(
6
5
,
12
5
)、N(6,-4).
∴直线MN的解析式为:y=-
4
a
x+4.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 串联和并联的灯泡为什么有亮和暗的区别
- 若a的2次方+ab=20,ab-b的2次方=-13.(1)求a的2次方+2AB-B的2次方的值(2)求a的2次方+3ab-2b的2次方
- 若级数an(x+1)^n在x=2处收敛,则此级数在x=-3处 A条件收敛 B绝对收敛 C发散 D无法确定
- 单韵母,复韵母,鼻韵母谁知道?
- 一竿子A点固定在墙上,B点从水平方向以初速度0向下圆周运动,到达竖直方向角速度为多少(杠杆密度均匀,长度为l).
- 怎么样由数据的平均值和标准差求某个数段的百分比
- 用举反例证明下列命题是假命题:
- 设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(I)求{an}的公比q (2)用iin表示{an}
- 已知,当A=a的3次方-2a+1,B=-3a的平方-4a的平方+1求-3A+2B
- 迈克耳逊如何八面棱镜测光速?