数列{an},为正项数列且4sn=(an+1)^2,求通项an
题目
数列{an},为正项数列且4sn=(an+1)^2,求通项an
答案
由4Sn=(an+1)^2 得4S(n+1)=(a(n+1)+1)^2 两式相减 4a(n+1)=[a(n+1)+an+2]*[a(n+1)-an] 化简2(a(n+1)+an)=(a(n+1)+an)(a(n+1)-an) 因为{an}是 正项数列 所以a(n+1)-an=2 ,即数列是等差数列,公差是d=2.在4Sn=(an+1)^2 ...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点