如图,在直角三角形ABC的斜边AB上取两点D、E,使AD=AC,BE=BC.当∠B的度数变化时,试讨论 ∠DCE如何变化?说明你的根据.
题目
如图,在直角三角形ABC的斜边AB上取两点D、E,使AD=AC,BE=BC.当∠B的度数变化时,试讨论
∠DCE如何变化?说明你的根据.
答案
不变化.
证明:∵AD=AC
∴∠ACD=∠ADC
同理,∠ECB=∠CEB
∵∠CEB+∠ADC+∠DCE=180°,
∴∠ACD+∠BCE+∠ECD=180°
即∠ACB+2∠ECD=180°
∴∠ECD=45°
则当∠B的度数变化时,∠DCE度数没有变化.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点