已知〔an〕是递增的数列,其前n项和为Sn且2Sn=an∧2+n

已知〔an〕是递增的数列,其前n项和为Sn且2Sn=an∧2+n

题目
已知〔an〕是递增的数列,其前n项和为Sn且2Sn=an∧2+n
试判断数列〔2Sn-11n/n〕是等差数列
答案
根据2Sn=an^2+n
得到2a1=a1^2+1
求得a1=1或a1=-1
又因为 an>0 所以a1=1
同理求得a2=2 a3=3
(2) 猜想an=n
证明 :因为 2Sn=an^2+n ……①
那么 2Sn-1=an-1^2+n-1 ……②
①-②得 2an=an^2-an-1^2+1
即(an-1)^2=an-1^2
因为an>0 两边同时开方得到:
an -1 = an-1
即 an - an-1 =1
故数列{an}为首项为1,公差为1的等差数列
那么an=1+(n-1)*1=n
(2sn-11n/n)=(n^2+n)/n=n+1
所以是等差数列
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.