Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于E,交BA的延延长线于F,过A作AH
题目
Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于E,交BA的延延长线于F,过A作AH
BC交BC于H、交BDY于M(1)求∠AMD的度数;(2)求证:BD=2CE.
答案
(1)
已知,Rt△ABC中,∠BAC = 90°,AB = AC ,
可得:∠ABC = 45°;
所以,∠AMD = ∠BMH = 90°-∠CBD = 90°-(1/2)∠ABC = 67.5°.
(2)
在△BCE和△BFE中,
∠BEC = 90°= ∠BEF ,BE为公共边,∠CBE = ∠FBE ,
所以,△BCE ≌ △BFE ,
可得:CE = EF ,即有:CF = 2CE ;
在△CAF和△BAD中,
∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,
所以,△CAF ≌ △BAD ,
可得:CF = BD ,则有:BD = 2CE .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点