若(x2+mx+n)(x2-2x-3)的乘积中不含x3、x2项,则m=______,n=______.
题型:填空题难度:简单来源:不详
若(x2+mx+n)(x2-2x-3)的乘积中不含x3、x2项,则m=______,n=______. |
答案
∵(x2+mx+n)(x2-2x-3) =x4-2x3-3x2+mx3-2mx2-3mx+nx2-2nx-3n, =x4+(-2+m)x3+(-3-2m+n)x2+(-3m-2n)x-3n, ∴要使(x2+mx+n)(x2-2x-3)的乘积中不含x3与x2项, 则有, 解得. 故答案为:2,7. |
举一反三
若(x+m)与(x+3)的乘积中不含x的一次项,则m=______. |
若(x+3)(2x-5)=2x2+bx-15,则b等于______. |
下面计算正确的是( )A.(x+2)(x-2)=x2-2 | B.(x+y)2=x2+y2 | C.(x-y)2=x2-2xy-y2 | D.(x+1)(x+2)=x2+3x+2 |
|
多项式-x2y+3πxy3-5xy的次数是______. |
如果x2+mx+6=(x-3)(x-n),则m+n的值为______. |
最新试题
热门考点