(本题满分为8分)某商店如果将进价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价,减小进货量的办法增加利润,已知这种商品每涨价0.5元,其销售
题型:解答题难度:简单来源:不详
(本题满分为8分)某商店如果将进价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价,减小进货量的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,问应将售价定为多少元时,才能使每天所获利润为640元? |
答案
设将售价定为x元,每天获利640元. (4分) (5分) (6分) ∵要提高售价,减少进货方 ∴x只取16 (7分) 答:……(8分) |
解析
略 |
举一反三
(本题满分为8分)某市区东西走向的青年路与南北走向的江阴路相交于O处,甲沿着青年路以4m/s的速度由西向东走,乙沿着江阴路以3m/s的速度由南向北走,当乙走到O点以北50m处时,甲恰好到达点O处,当行走过程中两人相距85m时,求两人各自的位置。 |
若|x+2y|+(y-2)2=0,则x- y=___ __。 |
某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。 (1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式; (2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。 (3)请分析并回答售价在什么范围内商家就可获得利润。 |
在宽为40m,长为64m的矩形广场上,修建同样宽的三条道路,两条纵向,一条横向,并且互相垂直,把耕地分成面积相等的六块作为草坪,要使草坪面积为2418m2,若道路宽为xm,根据题意列出方程为 ( )A.(64-2x)(40-x)=2418 | B.(64-x)(40-2x) =2418 | C.40x+64x-2x2=2418 | D.(64-x)(40-x)=2418 |
|
已知m是方程x2-x-2=0的一个根,则代数式m2-m的值为____. |
最新试题
热门考点