设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?

设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?

题型:鄂州难度:来源:
设x1,x2是关于x的一元二次方程x2+2ax+a2+4a-2=0的两实根,当a为何值时,x12+x22有最小值?最小值是多少?
答案
∵△=(2a)2-4(a2+4a-2)≥0,∴a≤
1
2

又∵x1+x2=-2a,x1x2=a2+4a-2.
∴x12+x22=(x1+x22-2x1x2=2(a-2)2-4.
设y=2(a-2)2-4,根据二次函数的性质.
a≤
1
2

∴当a=
1
2
时,x12+x22的值最小.
此时
x21
+
x22
=2(
1
2
-2)2-4=
1
2
,即最小值为
1
2
举一反三
已知关于x的一元二次方程5x2+kx-10=0一个根是-5,求k的值及方程的另一个根.
题型:不详难度:| 查看答案
如果x1、x2是一元二次方程x2-6x-2=0的两个根,那么x1+x2的值是______.
题型:填空题难度:一般| 查看答案
已知x1、x2是关于x的一元二次方程x2-2(k+1)x+k2+2=0的两根,若y=(x1+1)(x2+1).
(1)当y=8时,求k的值.
(2)是比较y与-k2+2k+2的大小,并说明理由.
题型:解答题难度:一般| 查看答案
已知b、c是满足c>b>0的整数,方程x2-bx+c=0有两个不等的实根x1和x2,设P=x1+x2,Q=x12+x22,R=(x1+1)(x2+1),试比较P、Q、R的大小,并说明理由.
题型:不详难度:| 查看答案
对a>b>c>0,作二次方程x2-(a+b+c)x+ab+bc+ca=0.
(1)若方程有实根,求证:a,b,c不能成为一个三角形的三条边长;
(2)若方程有实根x0,求证:a>x0>b+c;
(3)当方程有实根6,9时,求正整数a,b,c.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.