做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元

做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元

题型:不详难度:来源:
做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。某日王老板进货A款式服装35件,B款式服装25件。怎样分配给每个店铺各30件服装,使得在保证乙店铺毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?
答案
分配给甲店铺A、B两种款式服装分别为21件和9件,分配给乙店铺A,B两种款式服装分别为14件和16件,此时既保证了乙店铺获毛利润不小于950元,又保证了在此前提下王老板获取的总毛利润最大,最大的总毛利润为y总最大=-21+1965=1944(元)
解析

试题分析:设A款式服装分配到甲店铺为x件,则分配到乙店铺为(35-x)件;B款式分配到甲店铺为(30-x)件,分配到乙店铺为(x-5)件,总利润为y元,依题意可得到一个函数式和一个不等式,可求解.
试题解析:
设分配给甲店铺A款式服装x件(x取整数,且5≤x≤30),则分配给甲店铺B款装(30-x)件,分配给乙店铺A款服装(35-x)件,分配给乙店铺B款式服装[25-(30-x)]=(x-5)件,总毛利润(设为y总)为:
Y=30x+40(30-x)+27(35-x)+36(x-5)=-x+1965
乙店铺的毛利润(设为y乙)应满足:
Y=27(35-x)+36(x-5)≥950,得x≥
对于y总=-x+1965,y随着x的增大而减小,要使y总最大,x必须取最小值,又x≥,故取x=21,即分配给甲店铺A、B两种款式服装分别为21件和9件,分配给乙店铺A,B两种款式服装分别为14件和16件,此时既保证了乙店铺获毛利润不小于950元,又保证了在此前提下王老板获取的总毛利润最大,最大的总毛利润为y总最大=-21+1965=1944(元)
举一反三
某工厂现有甲种原料360kg,乙种原料290kg,计划用它们生产A、B两种产品共50件,已知每生产一件A种产品,需要甲种原料9kg、乙种原料3kg,获利700元,生产一件B种产品,需要甲种原料4kg、乙种原料10kg,可获利1200元.
(1)利用这些原料,生产A、B两种产品,有哪几种不同的方案?
(2)设生产两种产品总利润为y(元),其中生产A中产品x(件),试写出y与x之间的函数解析式.
(3)利用函数性质说明,采用(1)中哪种生产方案所获总利润最大?最大利润是多少?
题型:不详难度:| 查看答案
图中给出的直线和反比例函数的图像,判断下列结论正确的个数有(    )
;②直线 与坐标轴围成的△ABO的面积是4;③方程组的解为, ;④当-6<x<2时,有 .
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
一个正比例函数的图象经过点(4,-2),它的表达式为  (    )
A.B.C.D.

题型:不详难度:| 查看答案
王老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )

题型:不详难度:| 查看答案
已知一次函数经过哪几个象限(  )
A.一、二、三B.一、三、四C.一、二、四D.二、三、四

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.