若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是( )A.B.C.D.
题型:不详难度:来源:
若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是( ) |
答案
A. |
解析
试题分析:∵正比例函数y=mx(m≠0),y随x的增大而减小, ∴该正比例函数图象经过第二、四象限,且m<0. ∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴. 综上所述,符合题意的只有A选项. 故选A. |
举一反三
已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
(1)求该反比例函数的解析式; (2)求直线BC的解析式. |
如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作轴的垂线与三条直线,,相交,其中.则图中阴影部分的面积是( )
A.12.5 | B.25 | C.12.5 | D.25 |
|
某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.
根据以上信息,完成下列问题: (1)当3<t≤7时,用含t的式子表示v; (2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式; (3)求该物体从P点运动到Q总路程的时所用的时间. |
直线经过点A(-1,)与点B(,1),其中>1,则直线不经过( ) |
在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2,那么点A3的纵坐标是 ,点A2013的纵坐标是 .
|
最新试题
热门考点