如图,已知抛物线y=ax2+2x+c的顶点为A(―1,―4),与y轴交于点B,与x轴负半轴交于点C.(1)求这条抛物线的函数关系式;(2)点P为第三象限内抛物线

如图,已知抛物线y=ax2+2x+c的顶点为A(―1,―4),与y轴交于点B,与x轴负半轴交于点C.(1)求这条抛物线的函数关系式;(2)点P为第三象限内抛物线

题型:不详难度:来源:
如图,已知抛物线y=ax2+2x+c的顶点为A(―1,―4),与y轴交于点B,与x轴负半轴交于点C.

(1)求这条抛物线的函数关系式;
(2)点P为第三象限内抛物线上的一动点,连接BC、PC、PB,求△BCP面积的最大值,并求出此时点P的坐标;
(3)点E为抛物线上的一点,点F为x轴上的一点,若四边形ABEF为平行四边形,请直接写出所有符合条件的点E的坐标.
答案
(1) (2),P() 
(3)(――1, 1)、(―1, 1)
解析
试题分析:(1)因为y=ax2+2x+c的顶点为A(―1,―4)
所以,解得
将A(―1,―4)代入y=ax2+2x+c
所以c=-3
所以该函数解析式为

(2)如图,连接OP,

设点P(m,),(―3<m<0)
∴S△PBC=S△OPC+S△OPB―S△BOC
=×3×()+×3×(―m)―×3×3
=―m―m
=―
∴当m=―,即P(
∴S△PBC有最大值为
(3)抛物线y=ax2+2x+c与y轴交于点B,与x轴交于点C、D
所以B(0,-3),C(-3,0),D(1,0)
因为点E为抛物线上的一点,点F为x轴上的一点
若四边形ABEF为平行四边形
则E可为(――1, 1)、(―1, 1)
本题涉及了二次函数的解析式和几何意义,该题是常考题,主要考查学生对二次函数解析式系数与图像的关系,明确在直角坐标系中几何图形的意义。
举一反三
某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图。
注:甲、乙两图中的A、B、C、D、E、F、G、H所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本(生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分)。请你根据图象提供的信息说明:

(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?最大收益是多少?说明理由。
题型:不详难度:| 查看答案
如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线)将四边形ABCD面积二等分,求的值;
(3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?

题型:不详难度:| 查看答案
已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形。
(1)求满足条件的所有点B的坐标。(直接写出答案)
(2)求过O、A、B三点且开口向下的抛物线的函数解析式。(只需求出满足条件的即可)。
(3)在(2)中求出的抛物线上存在点p,使得以O、A、B、P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积。

题型:不详难度:| 查看答案
如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是(  )
A.y=(x-1)2+2B.y=(x+1)2+2
C.y=x2+1D.y=x2+3

题型:不详难度:| 查看答案
某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=        
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.