如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.(1)求此抛物线的解析式;(2)若直线()将四边形ABCD面积二等分,求的

如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.(1)求此抛物线的解析式;(2)若直线()将四边形ABCD面积二等分,求的

题型:不详难度:来源:
如图1,抛物线经过A(-1,0),C(3,-2)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线)将四边形ABCD面积二等分,求的值;
(3)如图2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点P旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,求点N和点P的坐标?

答案
(1) ;(2) ;(3) (1,-3),(1,-1).
解析

试题分析:把A、C两点坐标代入即可求出a、b的值,从而确定抛物线的解析式.
(1)∵抛物线经过A(-1,0),C(3,-2),
,解之得:
∴所求抛物线的解析式为:
(2)令,解得:x1=-1,x2=4,
∴B(4,0),
令x=0,可得:y=-2,
∴D(0,-2),
∵C(3,-2),
∴DC∥AB,
由勾股定理得:AD=BC=
∴四边形ADCB是等腰梯形,
∵D(0,-2),C(3,-2),∴取DC中点E,则E的坐标是(,-2),
过E作EF⊥AB于F,取EF的中点G,则G的坐标是(,-1),
则过G的直线(直线与AB和CD相交)都能把等腰梯形ABCD的面积二等份,
把G的坐标代入y=kx+1,得:
; 

(3)设Q(m,n),则M(m+2,n),N(m,n-1),
代入,得:,解之,得:
∴Q(1,-2),M(3,-2),N(1,-3),
又Q的对应点为F(1,0),
∴QF的中点为旋转中心P,且P(1,-1),
∴点N、P的坐标分别为:(1,-3),(1,-1).
举一反三
已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形。
(1)求满足条件的所有点B的坐标。(直接写出答案)
(2)求过O、A、B三点且开口向下的抛物线的函数解析式。(只需求出满足条件的即可)。
(3)在(2)中求出的抛物线上存在点p,使得以O、A、B、P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积。

题型:不详难度:| 查看答案
如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是(  )
A.y=(x-1)2+2B.y=(x+1)2+2
C.y=x2+1D.y=x2+3

题型:不详难度:| 查看答案
某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=        
题型:不详难度:| 查看答案
若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的最大值。
题型:不详难度:| 查看答案
如图,已知抛物线与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
(1)直接写出A、D、C三点的坐标;
(2)在抛物线的对称轴上找一点M,使得MD+MC的值最小,并求出点M的坐标;
(3)设点C关于抛物线对称的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.