已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式

已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式

题型:不详难度:来源:
已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;
(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.

答案
(1) 1,2,3;(2);(3).
解析

试题分析:(1)由求出正整数解即可.
(2)求出方程有两个不为0的整数根时的二次函数解析式,根据平移的性质得到平移后的函数图象的解析式.
(3)分直线有一个交点且与有两个交点和直线有两个交点且与有一个交点两种情况求解即可.
(1)∵ 方程有实数根,∴.
,解得.
为正整数,∴为1,2,3.
(2)当时,,方程的两个整数根为6,0;
时,,方程无整数根;
时,,方程的两个整数根为2,1
,原抛物线的解析式为: .
∴平移后的图象的解析式为.
(3)翻折后得到一个新的图象G的解析式为
联立,即.
.
∴当时,直线有一个交点,当时,直线有两个交点.
联立,即.
.
∴当时,直线有一个交点,当时,直线有两个交点.
∴要使直线与图象G有3个公共点即要直线有一个交点且与有两个交点;或直线有两个交点且与有一个交点.
的取值范围为.

举一反三
如果一条抛物线轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是       三角形;
(2)如图,△OAB是抛物线的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由;
(3)在(2)的条件下,若以点E为圆心,r为半径的圆与线段AD只有一个公共点,求出r的取值范围.

题型:不详难度:| 查看答案
如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是(   )

A.          B.
C.        D.
题型:不详难度:| 查看答案
已知关于的一元二次方程
(1)求证:方程总有两个实数根;
(2)若m为整数,当此方程有两个互不相等的负整数根时,求m的值;
(3)在(2)的条件下,设抛物线与x轴交点为A、B(点B在点A的右侧),与y轴交于点C.点O为坐标原点,点P在直线BC上,且OP=BC,求点P的坐标.
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,抛物线过点,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且CPD=
(1)求抛物线的解析式;
(2)若点P的横坐标为m,△PCD的面积为S,求S与m之间的函数关系式;
(3)过点P作PE⊥DP,连接DE,F为DE的中点,试求线段BF的最小值.

题型:不详难度:| 查看答案
若二次函数配方后为,则       .
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.