如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.(1)说明:;(2)当点C、点A到

如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.(1)说明:;(2)当点C、点A到

题型:不详难度:来源:
如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.

(1)说明:
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为时,求的值.
答案
(1)理由见解析;(2)();(3)2.
解析

试题分析:(1)由y=0,得出的一元二次方程的解就是A、B两点的横坐标.由此可求出A、B的坐标。通过构建相似三角形求解,过O作OG∥AC交BE于G,那么可得出两组相似三角形:△GED∽△OGD、△BOG∽△BAE,可分别用这两组相似三角形得出OG与EC的比例关系、OG与AE的比例关系,从而得出CE、AE的比例关系.
(2)由已知可求C(2,8),再求AC所在直线解析式,根据△AEF∽△ACH可求E点坐标.
(3)由D是OC的中点可知S△OCE=2S△CDE,又由已知可求S△AOC=8,从而可求出CH、AH的值,从而可求的值.
试题解析:(1)令y=0,则有-x2+2x+8=0.
解得:x1=-2,x2=4
∴OA=2,OB=4.
过点O作OG∥AC交BE于G

∴△CEG∽△OGD

∵DC=DO
∴CE=0G
∵OG∥AC
∴△BOG∽△BAE

∵OB=4,OA=2
;
(2)由(1)知A(-2,0),且点C、点A到y轴的距离相等,
∴C(2,8)
设AC所在直线解析式为:y=kx+b
把 A 、C两点坐标代入求得k=2,b=4
所以y=2x+4
分别过E、C作EF⊥x轴,CH⊥x轴,垂足分别为F、H

由△AEF∽△ACH可求EF=,OF=,
∴E点坐标为(
(3)连接OE
∵D是OC的中点,
∴S△OCE=2S△CED
∵S△OCE:S△AOC=CE:CA=2:5
∴S△CED:S△AOC=1:5.
∴SAOC=5SCED=8

∴CH=8

考点: 二次函数综合题.
举一反三
如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).

(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;
(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c的图象如图所示,则点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

题型:不详难度:| 查看答案
将抛物线y=2x2先沿x轴方向向左平移2个单位,再沿y轴方向向下平移3个单位,所得抛物线的解析式是 _________ 
题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,﹣1),交x轴与A、B两点,交y轴于点C,其中点B的坐标为(3,0).

(1)求该抛物线的解析式;
(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式.
题型:不详难度:| 查看答案
将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是(           )
A.B.
C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.