如图,抛物线的顶点为Q,与轴交于A(-1,0)、B(5, 0)两点,与轴交于C点. (1)直接写出抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一

如图,抛物线的顶点为Q,与轴交于A(-1,0)、B(5, 0)两点,与轴交于C点. (1)直接写出抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一

题型:不详难度:来源:
如图,抛物线的顶点为Q,与轴交于A(-1,0)、B(5, 0)两点,与轴交于C点.
 
(1)直接写出抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点,使得△的周长最小.请在图中画出点的位置,并求点的坐标.
答案
见解析
解析

试题分析:(1)抛物线轴交于A(-1,0)、B(5, 0)两点,根据一元二次方程与二次函数的关系可得的两根,根据根与系数的关系得b=4,c=5所以,配方得出写出顶点Q的坐标Q(2,9).
(2)如图,连接BC,交对称轴于点P,连接AP、AC.因为AC长为定值,所以,要使△PAC的周长最小,只需PA+PC最小. 而点A关于对称轴=1的对称点是点B(5,0),抛物线与y轴交点C的坐标为(0,5).

∴由几何知识可知,PA+PC=PB+PC为最小. 不妨设直线BC的解析式为y=k+5,
将B(5,0)代入5k+5=0,得k=-1,=-+5,与对称轴的交点就是P,所以=2时,y="3" ,即点P的坐标为(2,3).
试题解析:(1)
∴Q(2 ,9).
(2)如解析图,连接BC,交对称轴于点P,连接AP、AC.
∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小.
∵点A关于对称轴=1的对称点是点B(5,0),抛物线与y轴交点C的坐标为(0,5).
∴由几何知识可知,PA+PC=PB+PC为最小.
设直线BC的解析式为y=k+5,
将B(5,0)代入5k+5=0,得k=-1,
=-+5,  
∴当=2时,y="3" ,∴点P的坐标为(2,3).
举一反三
甲车在弯路做刹车试验,收集到的数据如下表所示:
速度(千米/时)
0
5
10
15
20
25

刹车距离(米)
0

2

6


(1)请用上表中的各对数据作为点的坐标,在如图所示的坐标系中画出刹车距离(米)与速度(千米/时)的函数图象,并求函数的解析式;

(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车刹车距离分别为12米和10.5米,又知乙车刹车距离(米)与速度(千米/时)满足函数,请你就两车速度方面分析相撞原因.
题型:不详难度:| 查看答案
如图,已知抛物线与直线交于点O(0,0),A(,12),点B是抛物线上O,A之间的一个动点,过点B分别作轴、轴的平行线与直线OA交于点C,E.

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(),求出之间的关系式.
题型:不详难度:| 查看答案
二次函数的图象的顶点坐标是(   )
A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)

题型:不详难度:| 查看答案
如图所示,抛物线顶点坐标是P(1,3),则函数y随自变量x的增大而减小的x的取值范围是(   )
A.x>3B.x<3C.x>1D.x<1

题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c的部分图象如图所示,那么下列判断不正确的是(  )
A.ac<0
B.a-b+c>0
C.b=-4a
D.关于x的方程ax2+bx+c=0根是x1=-1,x2=5

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.