若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= .
题型:不详难度:来源:
若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n= . |
答案
9 |
解析
分析:∵抛物线y=x2+bx+cx轴只有一个交点,∴当时,y=0.且b2﹣4c=0,即b2=4c. 又∵点A(m,n),B(m+6,n),∴点A、B关于直线对称。 ∴A(,n),B(,n)。 将A点坐标代入抛物线解析式,得:。 |
举一反三
已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2);(x1<x2) (1)当k=1,m=0,1时,求AB的长; (2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想. (3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想. (平面内两点间的距离公式). |
如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是
|
已知抛物线与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).
(1)求D点的坐标; (2)如图1,连接AC,BD并延长交于点E,求∠E的度数; (3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标. |
在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线的对称轴是直线x=2.
(1)求出该抛物线的解析式. (2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究: ①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,的值是否发生变化?若发生变化,说明理由;若不发生变化,求出的值. ②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由. |
如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分, 给出下列命题: ①abc<0;②b>2a;③a+b+c=0 ④ax2+bx+c=0的两根分别为﹣3和1; ⑤8a+c>0.其中正确的命题是 .
|
最新试题
热门考点