如图,抛物线(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂

如图,抛物线(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂

题型:不详难度:来源:
如图,抛物线(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.

(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
答案
(1)
(2)点D的坐标为
(3)满足条件的点P的坐标为(﹣8,﹣15)、(2,)、(10,﹣39)。
解析

分析:(1)把点A、B、C的坐标分别代入已知抛物线的解析式列出关于系数的三元一次方程组,通过解该方程组即可求得系数的值。
(2)由(1)中的抛物线解析式易求点M的坐标为(0,1).所以利用待定系数法即可求得直线AM的关系式为。由题意设点D的坐标为,则点F的坐标为,易求DF关于的函数表达式,根据二次函数最值原理来求线段DF的最大值。
(3)对点P的位置进行分类讨论:点P分别位于第一、二、三、四象限四种情况。利用相似三角形的对应边成比例进行解答。
解:(1)把A(﹣3,0)、B(1,0)、C(﹣2,1)代入得,
.解得
∴抛物线的表达式为
(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1)。
设直线MA的表达式为y=kx+b,

,解得
∴直线MA的表达式为
设点D的坐标为
则点F的坐标为

∴当时,DF的最大值为
此时,即点D的坐标为
(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似。
设P
在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限。
①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3NM。
,即
解得m=﹣3或m=﹣8。
∵此时﹣3<m<0,∴此时满足条件的点不存在。
②当点P在第三象限时,
∵点P不可能在直线MN上,∴只能PN=3NM。
,即
解得m=﹣3(舍去)或m=﹣8。
当m=﹣8时,,∴此时点P的坐标为(﹣8,﹣15)。

③当点P在第四象限时,
若AN=3PN时,则
即m2+m﹣6=0。
解得m=﹣3(舍去)或m=2。
当m=2时,
∴此时点P的坐标为(2,)。
若PN=3NA,则,即m2﹣7m﹣30=0。
解得m=﹣3(舍去)或m=10。
当m=10时,,∴此时点P的坐标为(10,﹣39)。
综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,)、(10,﹣39)。
举一反三
下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是
A.y=3x2+2B.y=3(x﹣1)2
C.y=3(x﹣1)2+2D.y=2x2

题型:不详难度:| 查看答案
如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).

(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.
题型:不详难度:| 查看答案
把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为
A.B.
C.D.

题型:不详难度:| 查看答案
若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=     
题型:不详难度:| 查看答案
已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2);(x1<x2
(1)当k=1,m=0,1时,求AB的长;
(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想.
(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.
(平面内两点间的距离公式).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.