已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的解析式和对称轴;      (2)设点

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的解析式和对称轴;      (2)设点

题型:不详难度:来源:
已知抛物线yax2bxc经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的解析式和对称轴;      
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为时,求直线AN的解析式.
答案
(1)y=-x2+2x+3  (2) P1(1,1),P2(1,2)   (3)
解析

试题分析:
解:(1)将三点代入y=ax2+bx+c中,易求解析式为:
对称轴为:直线 
(2)设点P(1,y)是直线l上的一个动点,作CF⊥l于F,lx轴于E,
则AC2=AO2+CO2=10,CP2=CF2+PF2=1+(3-y)2
AP2=AE2+PE2=4+y2, ∴由CP2+AP2=AC2
得:+4+y2=10,解得
∴P点的坐标为P1(1,1)、P2(1, 2)
解法二; 用△相似解法更简单如下:
∵CP⊥AP,∴△CPF∽△PAE,∴,∴∴解得
(3)
设点M(1,m), 与(2)同理可得:AC2=10,CM2,AM2=4+m2
①当AC=CM时,10=,解得:m=0或m=6(舍去)
②当AC=AM时,10=4+m2, 解得:mm
③当CM=AM时,=4+m2,解得:m=1
检验:当m=6时,M、A、C三点共线,不合题意,故舍去;
综上可知,符合条件的M点有4个,
M坐标为(1,0) 、(1,)、(1,-)、(1,1)

(4)设直线AN的解析式为,且交y轴于点K,∵过点A(―1, 0),∴
∴K(0,k),∵N是直线AN与抛物线的交点,∴,解得x=3―k
x=―1(舍去),∴N点的横坐标为x=3―kk<3)  
由S△ACN=S△ACK+S△CKNCK·OA+CK·NJ=(3―k)×1+(3―k2

,解得k(舍去),或k
∴直线AN的解析式为
点评:熟知上述性质概念,本题综合性很强,运用的知识点很多,要认真审题才可解之,还需做辅助线求得,在二问中有两个答案易漏求,求得方法也不唯一,三问中可求有五个点,有一个不合题意需舍去,四问中同样也有一个要舍去,计算量较多,易出错,难度较大,属于难题。
举一反三
已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①;②a b c<0;③;④8a+c>0.其中正确的有 (   )
A.3个B.2个C.1个D.0个

题型:不详难度:| 查看答案
教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是       m。
题型:不详难度:| 查看答案
如图,把抛物线平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线交于点Q,则图中阴影部分的面积为___________
 
题型:不详难度:| 查看答案
已知关于的一元二次方程有两个实数根
(1)求实数的取值范围;(2)当时,求的值.
题型:不详难度:| 查看答案
某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).
(1)  一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.