蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:上市时间(月份)123456市场售价(元/千

蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:上市时间(月份)123456市场售价(元/千

题型:不详难度:来源:
蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:
上市时间(月份)
1
2
3
4
5
6
市场售价(元/千克)
10.5
9
7.5
6
4.5
3
这种蔬菜每千克的种植成本(元/千克)与上市时间(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价(元/千克)关于上市时间(月份)的函数关系式;
(2)若图中抛物线过点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)

答案
来(1)设p=kx+b.
当x=1时,y=10.5;当x=2时,y=9,所以,解得.所以.
(2)从抛物线的图象可以看到C(6,2)是函数的顶点,所以设y=a(x-6)2+2.
因为点(4,3)在二次函数图象上,所以a(4-6)2+2=3.解得a=.
所以.
(3)设收益为,则
时,
月上市出售这种蔬菜每千克收益最大,最大受益为元.
解析
(1)根据表格可以得到P与x的满足一次函数关系,然后利用待定系数法求出一次函数解析式;(2)利用“三点式”或者“顶点式”求出二次函数的解析式;(3)利用收益=售价-成本,从而得到收益与上市时间之间的二次函数,利用二次函数的性质得到上市时间以及最大收益.
举一反三
如图,已知平面直角坐标系中,点为两动点,其中,连结
(1)求证:
(2)当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线轴于点,过点作直线交抛物线于两点,问是否存在直线,使?若存在,求出直线对应的函数关系式;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,点的坐标分别为
(1)请在图中画出,使得关于点成中心对称;
(2)若一个二次函数的图象经过(1)中的三个顶点,求此二次函数的关系式.
题型:不详难度:| 查看答案
已知点A(-2,-c)向右平移8个单位得到点,A与两点均在抛物线上,且这条抛物线与轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.
题型:不详难度:| 查看答案
某宾馆有客房间,当每间客房的定价为每天元时,客房会全部住满.当每间客房每天的定价每涨元时,就会有间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出元的各种费用.
(1)请写出该宾馆每天的利润(元)与每间客房涨价(元)之间的函数关系式;
(2)设某天的利润为元,元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?
(3)请回答客房定价在什么范围内宾馆就可获得利润?
题型:不详难度:| 查看答案
若一次函数的图像过第一、三、四象限,则函数(   )
A.有最大值B.有最大值C.有最小值D.有最小值

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.