1)解析:∵y=-1/4+x+3 ∴C(0,3),A(-2,0),B(6,0) ∴BC 方程为y=-1/2(x-6)=-1/2x+3 (2)解析:由抛物线可求出D(2,4) D到直线BC的距离d=|2+24-6|/√5=/5 ∴圆半径r的取值范围为r>=/5 (3)解析:∵r=5 设P(x,y) d=|x+2y-6|/√5=|3x-1/2|/当0<=x<=6时,d=(3x-1/2)/当x<0或x>6时,d=(1/2x^2-3x)/ (1/2-3x)/ =5==>1/2-3x-5=0 解得x1=3-√(9+10)≈-2.6,x2=3+√(9+10)≈8.6 代入抛物线得y1≈-1.29,y2≈-6.89 ∴P1(-2.6,-1.29),P2=(8.6,-6.89) |