(本题满分10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.小题1:(

(本题满分10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.小题1:(

题型:不详难度:来源:
(本题满分10分)
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B.
小题1:(1)求这条抛物线所对应的函数关系式;
小题2:(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
小题3:(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

答案

小题1:(1)设抛物线的解析式为y =ax2+bx+c,则有:
解得:,所以抛物线的解析式为y =x2-2x-3
小题2:(2)令x2-2x-3=0,解得x1=-1,x2=3,所以B点坐标为(3,0).
设直线BC的解析式为y =kx+b,
,解得,所以直线解析式是y =x-3.
当x=1时,y=-2.所以M点的坐标为(1,-2).
小题3:(3)方法一:要使∠PBC=90°,则直线PC过点C,且与BC垂直,
又直线BC的解析式为y =x-3,
所以直线PC的解析式为y =-x-3,当x=1时,y=-4,
所以P点坐标为(1,-4).
方法二:设P点坐标为(1,y),则PC2=12+(-3-y)2,
BC2=32+32;PB2=22+y2
由∠PBC=90°可知△PBC是直角三角形,且PB为斜边,则有PC2+BC2=PB2.
所以:[12+(-3-y)2]+[32+32]=22+y2;解得y =-4,
所以P点坐标为(1,-4)
解析

举一反三
画出一元二次函数 的图像(求开口方向、对称轴、顶点坐标、最值,与x轴交点坐标,与y轴交点坐,以及x取哪些值时,y随x的增大而增大;x取哪些值时,y随x的增大而减小。)
题型:不详难度:| 查看答案
阅读材料:我们学过二次函数的图像的平移,如:将二次函数y=2x的图像沿x轴向左平移3个单位长度得到函数y=2(x+3)的图像,再沿y轴向下平移1个单位长度,得到函数y=2(x+3)-1的图像.
类似的,将一次函数y=2x的图像沿x轴向右平移1个单位长度可得到函数y=2(x-1)的图像,再沿y轴向上平移1个单位长度,得到函数y=2(x-1)+1的图像.
解决问题:
小题1:将一次函数y= -x的图像沿x轴向右平移2个单位长度,再沿y轴向上平移3个单位长度,得到函数           的图像;
小题2:将y=的图像沿y轴向上平移3个单位长度,得到函数       的图像,再沿x轴向右平移1个单位长度,得到函数         的图像;
小题3:函数y=的图像可由哪个反比例函数的图像经过怎样的变换得到?
题型:不详难度:| 查看答案
如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的二次函数图像经过点B、D.

小题1:请直接写出用m表示点A、D的坐标
小题2:求这个二次函数的解析式;
小题3:点Q为二次函数图像上点P至点B之间的一点,连结PQ、BQ,求四边形ABQP面积的最大值.
题型:不详难度:| 查看答案
已知的图象如图所示,则的图象一定过 
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限

题型:不详难度:| 查看答案
抛物线轴于两点,交轴于点,对称轴为直线。且A、C两点的坐标分别为

小题1:求抛物线的解析式;
小题2:在对称轴上是否存在一个点,使的周长最小.若存在,请求出点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.