如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请

如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请

题型:不详难度:来源:
如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.

(1)请写出抛物线的开口方向、顶点坐标、对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式
答案
 
∴抛物线开口向下,顶点为,对称轴为x=4.
(2)令y=0,得
解得x1=0,x2=8.∴球飞行的最大水平距离是8m.
(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m.
∴抛物线的对称轴为x=5,顶点为
设此时对应的抛物线解析式为
又∵点(0,0)在此抛物线上,
,即
解析
 略
举一反三
二次函数的图象如图所示,则下列各式一定成立的是(   )
A.B.C.D.

题型:不详难度:| 查看答案
二次函数与一次函数在同一直角坐标系中图象大致是(   )

题型:不详难度:| 查看答案
已知抛物线,则该抛物线的顶点坐标是      .
题型:不详难度:| 查看答案
已知二次函数y=ax2bx-3的图象经过点A(2,-3),B(-1,0).
求二次函数的解析式.
 
题型:不详难度:| 查看答案
(本小题满分5分)
已知二次函数.
(1)将化成y=a (x-h) 2 +k的形式;
(2)指出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,yx的增大而增大?
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.