在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k-1)x+2k-1的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,其中k是一元二次方程

在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k-1)x+2k-1的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,其中k是一元二次方程

题型:不详难度:来源:
在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k-1)x+2k-1的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,其中k是一元二次方程p2-p-2=0的根,且k<0.
(1)求这个二次函数的解析式及A、B两点的坐标;
(2)若直线l:y=mx(m≠0)与线段BC交于点D(点D不与点B、C重合),则是否存在这样的直线l,使得以B、O、D为顶点的三角形与△ABC相似?若存在,求出该直线的解析式及点D的坐标;若不存在,请说明理由.
答案
(1)∵k是方程p2-p-2=0的根,
∴k=-1,或k=2.
又k<0,
∴k=-1.
∴此二次函数的解析式为:y=x2-2x-3.
令y=0得x1=-1,x2=3
∵点A在点B的左侧
∴A(-1,0),B(3,0).

(2)假设满足条件的直线l存在
过点D作DE⊥x轴于点E
∵点A的坐标为(-1,0),点B的坐标为(3,0),点C的坐标为(0,-3)
∴AB=4,OB=OC=3,∠OBC=45°
∴BC=3


2

要使以B、O、D为顶点的三角形与△ABC相似,已有∠OBD=∠ABC,
则只需
OB
AB
=
DB
CB
①,或
OB
CB
=
DB
AB
②成立即可.
①当
OB
AB
=
DB
CB

有BD=
OB•BC
AB
=
9


2
4

在Rt△BDE中,
DE=BD•sin45°=
9
4
,BE=BD•cos45°=
9
4

∴OE=OB-BE=3-
9
4
=
3
4

∵点D在x轴的下方,
∴点D的坐标为(
3
4
-
9
4
).
将点D的坐标代入l:y=mx(m≠0)中,求得m=-3
∴满足条件的直线l的函数解析式为y=-3x.

②当
OB
BC
=
DB
AB

有BD=
OB•AB
BC
=2


2

同理可得:BE=DE=2,OE=OB-BE=3-2=1
∵点D在x轴下方
∴点D的坐标为(1,-2).
将点D的坐标代入y=mx(m≠0)中,求得m=-2
∴满足条件的直线l的函数解析式为y=-2x.
∴综上所述满足条件的直线l的解析式是:y=-3x或y=-2x;
点D的坐标为(
3
4
-
9
4
)或(1,-2).
举一反三
如图,P为抛物线y=
3
4
x2-
3
2
x+
1
4
上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.
题型:不详难度:| 查看答案
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
1
4
S△ABC;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
题型:不详难度:| 查看答案
在平面直角坐标系xOy中,已知点A(-1,0),B(0,1),C(2,
9
5
).
(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;
(Ⅱ)求过A、B、C三点的抛物线Q的解析式;
(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知直线y=
1
3
x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.
(1)点C的坐标是______线段AD的长等于______;
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点C,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.