如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,3),过点A作AB⊥y轴,垂足为B,连结OA,抛物线y=-x2-2x+c经过点A,与x轴正半轴交于点C
(1)求c的值; (2)将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可). (3)将△OAB沿直线OA翻折,记点B的对应点B′,向左平移抛物线,使B′恰好落在平移后抛物线的对称轴上,求平移后的抛物线解析式. (4)连接BC,设点E在x轴上,点F在抛物线上,如果B、C、E、F构成平行四边形,请写出点E的坐标(不必书写计算过程). |