如图,已知点A(8,0),sin∠ABO=45,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )A.y=-12x2+4xB.y=-1

如图,已知点A(8,0),sin∠ABO=45,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )A.y=-12x2+4xB.y=-1

题型:不详难度:来源:
如图,已知点A(8,0),sin∠ABO=
4
5
,抛物线经过点O、A,且顶点在△AOB的外接圆上,则此抛物线的解析式为(  )
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

答案
如图所示:连接AC,过圆心O′作EF⊥OA,
∵∠AOC=90°,∠ABO=∠OCA,
AO
AC
=
4
5

∵点A(8,0),
∴AC=10,
根据题意得出:AM=OM=4,AO′=5,
∴MO′=3,∴MF=2,
∴F点坐标为:(4,-2),
设过O,A,F的抛物线解析式为:y=a(x-4)2-2,
将A代入(8,0)得:
0=a(8-4)2-2,
解得:a=
1
8

∴此时抛物线解析式为:y=
1
8
(x-4)2-2=
1
8
x2-x,
根据题意得出:AM=OM=4,AO′=5,
∴MO′=3,∴ME=8,
∴E点坐标为:(4,8),
设过O,A,E的抛物线解析式为:y=a(x-4)2+8,
将A代入(8,0)得:
0=a(8-4)2+8,
解得:a=-
1
2

∴此时抛物线解析式为:y=-
1
2
(x-4)2+8=-
1
2
x2+x,
故选:D.
举一反三
已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
6
5
,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O为坐标原点建立如图所示的直角坐标系,设P、Q分别为AB、OB边上的动点,他们同时分别从点A、O向B点匀速移动,移动的速度都是1厘米/秒,设P、Q移动时间为t秒(0≤t≤4)
(1)试用t的代数式表示P点的坐标;
(2)求△OPQ的面积S(cm2)与t(秒)的函数关系式;当t为何值时,S有最大值,并求出S的最大值;
(3)试问是否存在这样的时刻t,使△OPQ为直角三角形?如果存在,求出t的值,如果不存在,请说明理由.
题型:不详难度:| 查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3).
(1)试求出抛物线的解析式;
(2)问:在抛物线的对称轴上是否存在一个点Q,使得△QAC的周长最小,试求出△QAC的周长的最小值,并求出点Q的坐标;
(3)现有一个动点P从抛物线的顶点T出发,在对称轴上以1个单位长度每秒的速度向y轴的正方向运动,试问,经过几秒后,△PAC是等腰三角形?
题型:不详难度:| 查看答案
己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QDAC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.