某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售.镇政府对该花木产品每年固定投资x万元,所获利润为P=-150(x-30)2+10万元.为了响应

某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售.镇政府对该花木产品每年固定投资x万元,所获利润为P=-150(x-30)2+10万元.为了响应

题型:不详难度:来源:
某镇地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售.镇政府对该花木产品每年固定投资x万元,所获利润为P=-
1
50
(x-30)2+10
万元.为了响应我国西部大开发的宏伟决策,镇政府在制定经济发展的10年规划时,拟定开发花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元.若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路;后5年公路修通时,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每年固定投资x万元可获利润Q=-
49
50
(50-x)2+
194
5
(50-x)+308
万元.
(1)若不进行开发,求10年所获利润的最大值是多少?
(2)若按此规划进行开发,求10年所获利润的最大值是多少?
(3)若按此规划进行开发后,后5年所获利润共为2400万元,那么当本地销售投资金额大于外地销售投资金额时,每年用于本地销售投资的金额约为多少万元?(


13
≈3.606


55
≈7.416
,计算结果保留1位小数)
答案
(1)由P=-
1
50
(x-30)2+10知

当x=30时,P最大=10
即不开发此产品,每年可获得最大利润10万元.
∴不开发此产品,10年的最大利润为W1=10×10=100(万元);

(2)若对产品开发,前5年,由于每年必须从专项资金中拿出25万元投资修公路.
∴可用资金只有50-25=25(万元)
当x=25时,每年最大利润P=-
1
50
(25-30)2+10=9.5(万元)

∴前5年的最大利润W2=9.5×5=47.5(万元),
设后5年中,a万元用于本地销售投资,
则用于外地销售投资金额为(50-a)万元.
后5年的利润
W3=[-
1
50
(a-30)2+10
]×5+(-
49
50
a2+
194
5
a+308)×5
=-5a2+200a+1500
=-5(a-20)2+3500
∵-5<0
∴当a=20时,W3取得最大值为3500万元.
∴10年的最大利润为W=W2+W3=47.5+3500=3547.5(万元);

(3)令W3=2400
则-5a2+200a+1500=2400
∴a2-40a+180=0,
a=
40±4


55
2
=20±2


55

a1=20+2×7.416=34.832≈34.8万
a2=20-2×7.416=5.168≈5.2万
∵本地投资金额>外地投资金额
∴a=34.8.
即每年用于本地销售投资的金额约为34.8.
举一反三
如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;
(1)求a的值;
(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.
题型:不详难度:| 查看答案
如图,抛物线y=x2+bx+c与x轴交于点A、B(点A在点B左侧),与y轴交于点C(h,-3),且抛物线的对称轴是直线x=1.
(1)求b的值;
(2)点E是y轴少一动点,CE的垂直平分线交y轴于点F,交抛物线于P、Q两点,且点P在第三象限.当线段PQ=
3
r
AB时,求点E的坐标;
(3)若点M在射线CA少运动,过点M作MN⊥y轴,垂足为N,以M为圆心,MN为半径作⊙M,当⊙M与x轴相切时,求⊙M的半径.
题型:不详难度:| 查看答案
在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=
4
3
,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.
题型:不详难度:| 查看答案
用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.
题型:不详难度:| 查看答案
在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象的顶点为M,求AM的长.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.