(1)①直线FG1与直线CD的位置关系为互相垂直. 证明:如图1,设直线FG1与直线CD的交点为H. ∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1, ∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC. ∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF, ∴∠G1EF=∠P1EC. ∴△G1EF≌△P1EC. ∴∠G1FE=∠P1CE. ∵EC⊥CD, ∴∠P1CE=90°, ∴∠G1FE=90度. ∴∠EFH=90度. ∴∠FHC=90度. ∴FG1⊥CD. ②按题目要求所画图形见图1, ∵FG1⊥CD, ∴直线G1G2与直线CD的位置关系为互相垂直.
(2)∵四边形ABCD是平行四边形, ∴∠B=∠ADC. ∵AD=6,AE=1,tanB=, ∴DE=5,tan∠EDC=tanB=. 可得CE=4. 由(1)可得四边形EFHC为正方形. ∴CH=CE=4. ①如图2,当P1点在线段CH的延长线上时, ∵FG1=CP1=x,P1H=x-4, ∴S△P1FG1=×FG1×P1H=. ∴y=x2-2x(x>4). ②如图3,当P1点在线段CH上(不与C、H两点重合)时, ∵FG1=CP1=x,P1H=4-x, ∴S△P1FG1=×FG1×P1H=. ∴y=-x2+2x(0<x<4). ③当P1点与H点重合时,即x=4时,△P1FG1不存在. 综上所述,y与x之间的函数关系式及自变量x的取值范围是y=x2-2x(x>4)或y=-x2+2x(0<x<4).
|