如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线y=-x2+bx+c与x轴交于A、B两点(点A

如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线y=-x2+bx+c与x轴交于A、B两点(点A

题型:不详难度:来源:
如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(-3,0)及y轴上的C点.若抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的右侧),且经过点C,其对称轴与直线BC交于点E,与x轴交于点F.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,若∠APD=∠ACB,求点P的坐标;
(3)在抛物线上是否存在点M,使得直线CM把四边形EFOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
答案
(1)∵y=kx沿y轴向下平移3个单位长度后经过y轴上的点C,
∴此时直线的解析式为y=kx-3,令x=0,则y=-3,
∴C(0,-3),
设直线BC的解析式为y=kx-3.
∵B(-3,0)在直线BC上,
∴-3k-3=0解得k=-1.
∴直线BC的解析式为y=-x-3.
∵抛物线y=-x2+bx+c过点B,C,





-9-3b+c=0
c=-3

解得





b=-4
c=-3

∴抛物线的解析式为y=-x2-4x-3;

(2)由y=-x2-4x-3.可得D(-2,1),A(-1,0).
∴OB=3,OC=3,OA=1,AB=2,
可得△OBC是等腰直角三角形.
∴∠OBC=45°,CB=3


2

设抛物线对称轴与x轴交于点F,
∴AF=
1
2
AB=1.
连接AE,
∵∠AEF=∠BEF=45°,
∴∠AEB=90°.
可得BE=AE=


2
,CE=2


2

在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC△AFP.
AE
AF
=
CE
PF


2
1
=
2


2
PF
,解得,PF=2,
∵点P在抛物线的对称轴上,
∴点P的坐标为(-2,-2),(-2,2).

(3)存在.
∵D(-2,1),C(0,-3),直线BC的解析式为y=-x-3,
∴F(-2,0),E(-2,-1),
∴S梯形EFOC=
1
2
(EF+OC)•OF=
1
2
×(1+3)×2=4,
∵当直线CM过点F时,S△OCF=
1
2
OC•OF=
1
2
×3×2=3>
1
2
S梯形EFOC=2,
∴直线必过线段OF,设直线CM与线段OF相较于点G(x,0),则S△OCG=
1
2
OC•OG=
1
2
×3×
(-x)=2,解得x=-
4
3

∴G(-
4
3
,0),
设直线CM的解析式为y=kx+b(k≠0),
∵C(0,-3),G(-
4
3
,0)在直线CM上,





b=-3
-
4
3
k+b=0
,解得





b=-3
k=-
9
4

∴直线CM的解析式为y=-
9
4
x-3.
举一反三
体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD.设边AB的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时AB的长.
题型:不详难度:| 查看答案
直线y=-
1
3
x+1
分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.
(1)写出点A、B、C、D的坐标;
(2)求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;
(3)在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图中是抛物线形拱桥,当水面在n时,拱顶离水面2m,水面宽4m,水面下降1m,水面宽度增加多少?
题型:不详难度:| 查看答案
已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(-1,0),另一个交点为B.
(1)求点B的坐标;
(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;
(3)已知直线y=k与抛物线不相交,且抛物线上任意一点到这条直线的距离与这一点到点F(-2,-
3
4
a
)的距离相等,则k的值为______.(直接写答案)
题型:不详难度:| 查看答案
在平面直角坐标系中,O为坐标原点,二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为P.
(1)求这个二次函数的解析式;
(2)顶点P的坐标为______;此抛物线与x轴的另一个交点B的坐标为______;
(3)若抛物线与y轴交于C点,求△ABC的面积;
(4)在x轴上方的抛物线上是否存在一点D,使△ABD的面积等于△ABC的面积?若存在,请直接写出点D的坐标.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.