①∵(x-2)2≥0, ∴-(x-2)2≤0, ∴y2=-(x-2)2-1≤-1<0, ∴无论x取何值,y2总是负数; 故①正确; ②∵抛物线l1:y1=a(x+1)2+2与l2:y2=-(x-2)2-1交于点B(1,-2), ∴当x=1时,y=-2, 即-2=a(1+1)2+2, 解得:a=-1; ∴y1=-(x+1)2+2, ∴l2可由l1向右平移3个单位,再向下平移3个单位得到; 故②正确; ③∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6, ∴随着x的增大,y1-y2的值减小; 故③错误; ④设AC与DE交于点F, ∵当y=-2时,-(x+1)2+2=-2, 解得:x=-3或x=1, ∴点A(-3,-2), 当y=-2时,-(x-2)2-1=-2, 解得:x=3或x=1, ∴点C(3,-2), ∴AF=CF=3,AC=6, 当x=0时,y1=1,y2=-5, ∴DE=6,DF=EF=3, ∴四边形AECD为平行四边形, ∴AC=DE, ∴四边形AECD为矩形, ∵AC⊥DE, ∴四边形AECD为正方形. 故④正确. 故选C. |